

DBW-003-1162001

Seat No.

M. Sc. (Sem. II) Examination

July - 2022

Mathematics: CMT-2001

(Algebra-II)

Faculty Code: 003
Subject Code: 1162001

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions are compulsory.

- (2) Each question carries equal marks.
- (3) Figure on the right indicate allotted marks.
- 1 Answer any **seven** short questions:

 $7 \times 2 = 14$

- (i) Let $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n \in F[X]$ and $a_n \neq 0$. If F contains one root of f(x), then prove that, f(x) is reducible over F.
- (ii) Let $f(x) = x^3 + 6x^2 + 7x + 8$. Prove that, f(x-2) is an irreducible polynomial over Z[x]. Is f(x) irreducible ? (Y/N).
- (iii) $f(x) = x^3 + 4x^2 11x + 13$. Prove that f(x + 1) is an irreducible polynomial over $\mathbb{Z}[x]$.
- (iv) Define finite field extension and give an example of finite extension of degree 3.
- (v) For the field extension $^{R}|_{Q}$, write down two elements of R-Q, which are algebraic over Q and write down four elements of R, which are not algebraic over Q (they are transcendental elements over Q).
- (vi) Write down the minimal polynomial of the number $\sqrt{2} + \sqrt{3}$ over Q.

- (vii) Give definition of algebraically closed field. Also give an example of an infinite algebraic extension.
- (viii) Give an example of a finite field F such that |F|=4.
- (ix) Let M be an R-module. In standard notation, prove that, (-a)m = a(-m) = -(am), $\forall a \in R \text{ and } \forall m \in M$
- (x) For a ring R, define R-sub module of an R-module M. Also give an example of an R-sub module.

2 Attempt any two:

 $2 \times 7 = 14$

- (a) Let p be a prime. Prove that, $f(x) = x^{p-1} + x^{p-2} + x^{p-3} + ... + x + 1 \in \square[x]$ is an irreducible polynomial over $\mathbb{Q}[x]$.
- (b) Let $p(x) \in F[x]$ be an irreducible polynomial. Prove that, there is an extension $|F|_F$ such that E contains one root of p(x).
- (c) Prove that, every finite extension is an algebraic extension.

3 Attempt any one:

 $1 \times 14 = 14$

- (1) Let $E_{|F|}$ be a finite extension. Prove that, following statements are equivalent:
 - (i) $E=F(\infty)$, for some $\infty \in E$
 - (ii) There are only a finite number of sub fields of E containing F, as a subfield.
- (2) State and prove, the Fundamental Theorem of Galois Theroy.

4 Attempt any two:

 $2 \times 7 = 14$

- (1) Let ${}^E|_F$ be a field extension and $\infty_1, \infty_2, ..., \infty_n$ be are algebraic over F. Prove that, ${}^{F(\alpha_1, \alpha_2, ... \alpha_n)}|_F$ is a finite field extension.
- (2) Let char k = p > 0 and $f(x) \in k[x]$ be an irreducible polynomial. Prove that, f(x) has a multiple root if and only if $f(x) = g(X^p)$, for some $g(x) \in k[x]$.
- (3) Let K be a field and char K = p>0. Prove that, K is a perfect field if and only if $K = K^p$, where $K^p = \{\alpha^p / \alpha \in K\}$.

5 Attempt any two:

 $7 \times 2 = 14$

- (a) Let M be a free R-module and $\{e_1, e_2, ... e_n\}$ be a basis for M. Prove that, $M \cong R^n$
- (b) Let F be a field and Char F = 0. Let n be a natural number and n^{th} root of unity \in F. Let |F| be a cyclic extension and [K:F] = n. Prove that, there exist an $\infty \in K$ such that $K = F(\infty)$ and ∞ satisfies the polynomial $f(x) = x^n a \in f[x]$, where $a \in F$.
- (c) State and prove, Hilbert Theorem 90.
- (d) Let $f: M \to N$ be an R-homomorphism of R-modules. Prove that, Ker f and f(M) are R-sub modules of M and N respectively.